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Monoids

Definition: A monoid is a pair (M,+), where M is a set and + is a binary
operation satisfying the following conditions:

• + is associative: a+ (b + c) = (a+ b) + c for all a, b, c ∈ M,

• there exists 0 ∈ M such that 0 +m = m for all m ∈ M,

• + is commutative: a+ b = b + a for all a, b ∈ M.
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Submonoids

Definition: A subset N of a monoid M is called a submonoid of M if
0 ∈ N and N is closed under +.

Examples:

• Puiseux monoids are submonoids of Q≥0 (by definition).

• The monoid (N0 × {0}) ∪ (Z× N) is a submonoid of Z2.
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Monoids (cont.)

Definitions:

1 For a subset S of a monoid M, the submonoid of M generated by S is
defined as

⟨S⟩ :=
{∑

s∈S
nss : ns ∈ N0 with ns ̸= 0 for only finitely many s ∈ S

}
.

2 For a monoid M and b, c ∈ M, we say b divides c (and write b |M c)
if a+ b = c for some a ∈ M.

Examples:

• Every submonoid of N0 can be generated by a finite set.

• The monoid generated by the infinite set { 1
2i

: i ∈ N} is the Puiseux

monoid of non-negative dyadic rationals Z
[
1
2

]
≥0

=
{

n
2i

: i , n ∈ N0

}
,

which cannot be generated by a finite set.
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Finitary Power Monoids

Definition: The finitary power monoid of a monoid M is the set of
non-empty finite subsets of M, denoted by Pfin(M), with the so-called
sumset as its binary operation: for S ,T ∈ Pfin(M),

S + T := {s + t : s ∈ S , t ∈ T}.

Example: In Pfin(N0),

• {0, 1}+ {0, 1} = {0, 1, 2} and

• {0, 1}+ {0, 1, 2} = {0, 1}+ {0, 2} = {0, 1, 2, 3}.

Remark. For cancellative monoids M, the power monoid Pfin(M) is not
necessarily cancellative.
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Linearly Orderable Monoids

Definitions: Let (M,≤) be a monoid with a total order relation ≤.

1 (M,≤) is a linearly orderable monoid if a ≤ b implies a+ c ≤ b + c
for all a, b, c ∈ M.

2 A linearly orderable monoid (M,≤) is a positive monoid if 0 ≤ m for
all m ∈ M.

3 A positive monoid (M,≤) is Archimedean if for all non-zero a, b ∈ M,
na > b for some n ∈ N.

Example: Puiseux monoids are Archimedean under the standard order
relation.
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Atomicity

Definitions: Let M be a monoid.

1 Invertible elements are called units. The group of units is denoted by
U(M). If a = b + u where u is a unit, then a and b are called
associates. If U(M) = {0}, then M is called reduced.

2 a ∈ M\U(M) is an atom if a = b + c implies b or c is a unit. The set
of atoms is denoted by A(M). If A(M) = ∅, then M is called
antimatter.

3 M is called atomic if every b ∈ M is an atomic element, that is, b can
be written as a finite sum of atoms and units.

Examples:

• The (dyadic) positive monoid Z
[
1
2

]
≥0

generated by { 1
2i

: i ∈ N} is
antimatter, reduced, and not atomic.

• The positive monoid generated by
{
1
p : p ∈ P

}
is atomic with set of

atoms
{
1
p : p ∈ P

}
.
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Atomic Monoid Example

Example: We claim that the positive monoid M generated by{
1
p : p ∈ P

}
is atomic with the set of atoms being

{
1
p : p ∈ P

}
.

1 First, note that A(M) ⊆ { 1
p : p ∈ P} as { 1

p : p ∈ P} generates M.

2 It suffices to show that for any prime q ∈ P,

1

q
/∈
〈
1

p
: p ∈ P \ {q}

〉
.

3 Note that a linear combination of the reciprocals of a set of integers
has a denominator which divides the product of the integers.

4 But no product of a set primes is divisible by a prime not in the set,
proving the statement in (2).
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Maximal Common Divisors (MCD)

Definitions: Let M be a monoid, and let S be a non-empty finite subset
of M.

1 An element m ∈ M is a maximal common divisor (MCD) of S if m is
a common divisor of S and no other common divisor d ∈ M of S
exists such that m |M d but d ∤M m.

2 For each k ∈ N, the monoid M is called a k-MCD monoid if every
subset of M with size k has an MCD in M. In addition, M is called
an MCD monoid if it is k-MCD for all k ∈ N.

Examples:

• Every finitely generated monoid is an MCD monoid.

• The monoid generated by
{

1
2i
, 13 + 1

2i
: i ∈ N

}
is not a 2-MCD

monoid as its subset
{
1, 43

}
does not have an MCD.
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Non-MCD Monoid Example

Example: We claim that the monoid M =
〈
1
2i
, 13 + 1

2i
: i ∈ N

〉
is not

2-MCD, as {1, 43} does not have an MCD.

1 By inspection, every divisor of 1 is of the form n
2k

≤ 1 for n, k ∈ N0.

2 Furthermore, every such element, excluding 1, is a common divisor of
{1, 43}.

3 Note that 1 ∤M 4
3 , so the set of common divisors of {1, 43} are the

dyadic rationals less than 1.

4 Therefore, for any common divisor d = n
2k
, the rational

d0 = d + 1
2k+1 ∈ M is another common divisor of {1, 43} and thus d is

not an MCD.

5 Hence, {1, 43} does not have an MCD in M.
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MCD and Atomicity

Theorem (D.-Gotti-H.-Li-S, 2024)

Let M be a monoid, and let k ∈ N. Then the following are equivalent:

• M is an MCD monoid.

• Pfin(M) is an MCD monoid.

• Pfin(M) is a k-MCD monoid.

Moreover, if M is atomic monoid, then Pfin(M) is atomic if and only if M
is an MCD monoid.

Theorem (Gonzalez-Li-Rabinovitz-Rodriguez-Tirador, 2023),
(D.-Gotti-H.-Li-S, 2024)

There exists an atomic Puiseux monoid M such that Pfin(M) is not atomic.
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Near Atomicity

Definition: A linearly orderable monoid M is nearly atomic if there exists
a ∈ M such that a+ b is atomic for every b ∈ M.

Remarks:
• For a nearly atomic monoid M, the element a ∈ M mentioned before
must be atomic.

• Atomicity =⇒ near atomicity.

Example: Let α be irrational and ϕ : Q≥0 → P be an injective mapping.

We claim that the monoid M =
〈
q, q+α

ϕ(q) : q ∈ Q≥0

〉
is nearly atomic but

not atomic:
• None of the rationals are atomic in M.
• q+α

ϕ(q) is an atom for q ∈ Q≥0, so α+m is atomic for all m ∈ M.

Theorem (D.-Gotti-H.-Li-S, 2024)

There exists an atomic Puiseux monoid M such that Pfin(M) is not nearly
atomic.
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Almost Atomicity and Quasi-Atomicity

Definitions: Let M be a monoid.

• M is almost atomic if for every b ∈ M, there exists an atomic element
a ∈ M such that a+ b is atomic.

• M is quasi-atomic if for every b ∈ M, there exists an element a ∈ M
such that a+ b is atomic.

Remark: near atomicity =⇒ almost atomicity =⇒ quasi-atomicity.

Example: The monoid M =
〈
1
2i
, 1
3i

: i ∈ N
〉
≥ 4

3
is quasi-atomic but not

almost atomic.

• The only atom is 4
3 , however no multiple of 4

3 added to 1
2 is atomic.

• Every element divides some multiple of 4
3 .

Theorem (D.-Gotti-H.-Li-S, 2024)

There exists an almost atomic monoid M such that Pfin(M) is not
quasi-atomic.
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ACCP

Definitions: Let M be a monoid, and let I be a subset of M.

1 The set I is an ideal of M if I +M ⊆ I . The ideal I is principal if
I = x +M for some x ∈ M.

2 The monoid M satisfies the ACCP (ascending chains condition on
principal ideals) if every ascending chain of principle ideals

b1 +M ⊆ b2 +M ⊆ · · ·

eventually stabilizes: for some N ∈ N, the equality bm +M = bn +M
holds for all m, n > N).
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Almost ACCP and Quasi-ACCP

Definitions: Let M be a monoid.

• For an element s ∈ M, we say s satisfies the ACCP if every ascending
chain of principal ideals starting from s +M stabilizes.

• M is almost ACCP if for every non-empty subset S of M, there exists
an atomic common divisor d of S such that s − d satisfies the ACCP
for some s ∈ S .

• M is quasi-ACCP if for every subset S of M, there exists a common
divisor d of S such that s − d satisfies the ACCP for some s ∈ S .

Remark: ACCP =⇒ Almost ACCP ⇐⇒ quasi-ACCP and atomic.

Examples:

• The monoid Q≥0 is quasi-ACCP but not almost ACCP.

• For any rational q ∈ (0, 1) such that 1
q /∈ Z, the monoid generated by

{qn : n ∈ N} is almost ACCP but not ACCP.
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Ascent of Notions Weaker than the ACCP

Theorem (Gonzalez-Li-Rabinovitz-Rodriguez-Tirador, 2023):
If a monoid M is ACCP, then Pfin(M) is ACCP.

Theorem (D.-Gotti-H.-Li-S, 2024)

Let M be a linearly orderable monoid.

1 If a monoid M is almost ACCP, then Pfin(M) is almost ACCP.

2 If a monoid M is quasi-ACCP, then Pfin(M) is quasi-ACCP.
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Furstenberg Property

Definition: A monoid M satisfies the Furstenberg property if every
non-unit is divisible by at least one atom.

Examples:

• Every atomic monoid satisfies the Furstenberg property.

• The monoid M = (N0 × {0}) ∪ (Z× N) satisfies the Furstenberg
property; however, it is not atomic.
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A Furstenburg non-Atomic Monoid

Example: We claim that the monoid M = (N0 × {0}) ∪ (Z× N) satisfies
the Furstenberg property; however, it is not atomic.

• By inspection, (1, 0) is an atom.

• Any nonzero element is divisible by (1, 0), so M is Furstenburg and
A(M) = {(1, 0)}.

• ⟨{A(M)}⟩ = N0 × {0} ≠ M, so M is not atomic.
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Nearly Furstenberg Property

Definition: A monoid M satisfies the nearly Furstenberg property if there
exists an element c ∈ M such that for every non-unit b ∈ M, there exists
an atom a such that a |M b + c but a ∤M c .

Remark: Furstenberg =⇒ nearly Furstenberg.
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Almost Furstenberg Property

Definition: A monoid M satisfies the almost Furstenberg property if for
every non-unit b ∈ M, there exists an atomic element c and an atom a
such that a |M b + c but a ∤M c .

Remark: Furstenberg =⇒ almost Furstenberg.

Theorem (Lin-Rabinovitz-Zhang 2023)
There exist infinitely many non-isomorphic Puiseux monoids which satisfy
the following properties:

• nearly Furstenberg but not almost Furstenberg;

• almost Furstenberg but not nearly Furstenberg;

• almost Furstenberg and nearly Furstenberg but not Furstenberg.
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Quasi-Furstenberg Property

Definition: A monoid M satisfies the quasi-Furstenberg property if for
each non-unit b ∈ M, there exists some c ∈ M and atom a ∈ M such that
a |M b + c but a ∤M c .

Remarks:

• Nearly Furstenberg =⇒ quasi-Furstenberg.

• Almost Furstenberg =⇒ quasi-Furstenberg.

• (Lin-Rabinovitz-Zhang 2023) A Puiseux monoid M satisfies the
quasi-Furstenberg property ⇐⇒ M is quasi-atomic ⇐⇒ M is not
antimatter.

Example: The monoid M generated by {1
2} ∪ { 1

3i
: i ∈ N} satisfies the

quasi-Furstenberg property, however does not satisfy either of the nearly
Furstenberg and almost Furstenberg properties.

• 1
2 is an atom, and every element divides a multiple of 1

2 .

Jiya Dani, Leo Hong, and Shimon Schlessinger Finitary Power Monoids: Atomicity, Divisibility, and Beyond



Ascent of Notions Weaker than the Furstenberg Property

Theorem (D.-Gotti-H.-Li-S, 2024)

Let M be a linearly orderable monoid. For the following properties P, if M
satisfies P, then Pfin(M) also satisfies P.

1 Furstenberg property

2 Nearly Furstenberg property

3 Almost Furstenberg property

4 Quasi-Furstenberg property
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Divisibility and Irreducibility: IDF and TIDF

Definitions: A monoid is IDF (irreducible divisor finite) if every element is
divisible by finitely many atoms up to associate. A monoid is TIDF (tight
irreducible divisor finite) if it is IDF and satisfies the Furstenberg property.

Examples:

• Every antimatter monoid is IDF.

• Every finitely generated monoid is TIDF.

• The monoid generated by
{
1
p : p ∈ P

}
is not IDF ( 1p |M 1 for every

prime p). However, it is atomic.

Theorem (D.-Gotti-H.-Li-S, 2024)

If M is a positive Archimedean TIDF monoid, then Pfin(M) is TIDF.

Theorem (D.-Gotti-H.-Li-S, 2024)

There exists a positive TIDF monoid M such that Pfin(M) is not IDF.
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End of Presentation
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